MCROH
Microgrove
Microgrove Construction Chunk Diagram

Microgrove

Diagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homes

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Underwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permaculture
Combination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in Miami
Plan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bath
Interior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge above
Aerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangways
Site plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National Park
Axonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interior
Plan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed home
Upper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homes
Sunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne Bay
Section drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne Bay
Perspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integrated
Interior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodwork
Botanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising above
Perspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in Miami
Plan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in Miami

OTHER PROJECTS

Planes, frames, and volumes are fundamentals to all assembly logics. With the proliferation of additive production methods, the possibility of volumetric prefabricated components has the potential to radically alter the way that we conceive of construction and the permanence of building parts.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
Seating design is vital in fostering communal interactions in shared spaces. Rooted in the organic growth principles of the Metabolist movement and the transformational geometric language of digital Metaballs, Meta-Bench forms an experiential seating system which individuals can move and adjust.
In Tempe there are two pedestrian axes: Mill Avenue and Palm Walk. Mill Avenue is successful and Palm Walk is not. Is there a way to make the palm trees useful to the students? The PEP structure is powered by buried hydraulic pressure systems giving vertical movement to the layer/palm interface.
The CART live/work housing prototype adds a vertical profile to downtown while converting an underutilized public path into an urban gesture by introducing of a specialized food cart zone in New Haven. The CART residents would rent and appropriate the moving space as a means of expanding their zone.
Coney Island will remain a MUTANT appendage at the farthest shore of New York City. Coney is an agglomeration of all of its histories and should continue to simultaneously move each agenda forward. Coney will continue to evolve through mutations— this vision will accelerate its hybridity.
Utilizing built form as a strategic carrier of culture in opposition of the status quo, the Hellinikon project links the disconnected suburban mountain communities to the east with the sea to the west while splitting the Hellinikon International Airport and Olympic Park into distinct zones.
Expanding the mission of the local Biscayne National Park Institute, MICROGROVE is a living research community designed for scientists, ecologists, researchers, and eco-tourists, dedicated to the study, restoration, and increased social awareness of coastal ecosystems.

OTHER RESEARCH