MCROH
Microgrove
Microgrove - Plan 0 - Dock

Microgrove

Plan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in Miami

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Underwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permaculture
Combination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in MiamiCombination section and plan drawings of the MICROGROVE 3D printed housing community in Miami
Plan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed home
Interior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge above
Aerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangways
Site plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National Park
Axonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interior
Diagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homes
Upper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homes
Sunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne Bay
Section drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne Bay
Perspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integrated
Interior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodwork
Botanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising above
Perspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in Miami
Plan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bath

OTHER PROJECTS

Space has become redundant again. Popular culture is uninterested in the goings-on in space. Once achieved, mans absurd relation with space becomes yesterdays news. To become relevant to the public, CASIS must be an amenity and not a mission. Instead of promoting an HQ, make it a public interface.
The challenge of creating a pair of studio apartments that can fill a lifted 16'x16' void necessitates the creation of a quick, mobile, and opportunistic building system that can react to the found conditions of the site. Access to the site is limited and the ground must be free.
QTCT is tasked to blend these two identities onto one site—a give and take relationship between beach ambitions and urban necessities. QTCT is a sampling of two worlds: on one hand it is the embodiment of the language of the beach and on the other it is a detailed and exacting built urban space.
The Urban Test Object (UTO) serves as a large-scale intervention that accelerates our relationship with the future city. Rather than solving issues like density, infrastructure, or access, the UTO heightens awareness of the rapid urban transformations shaping our future.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
Seeing Park Avenue as an underutilized zone that connects four vibrant neighborhoods from 42nd Street to 144th Street, Infrastructural Infill is a study testing the potential to locate a combination of mixed-use housing and transportation in the residual spaces caused by urban infrastructure.
Coney Island will remain a MUTANT appendage at the farthest shore of New York City. Coney is an agglomeration of all of its histories and should continue to simultaneously move each agenda forward. Coney will continue to evolve through mutations— this vision will accelerate its hybridity.
University Island is a swirling shapeshifter, in both the landscape and the architecture, that offers it’s undefined field of opportunities to the students and anticipates that each will discover and produce their own individual relationship with the island and their education.

OTHER RESEARCH