MCROH
Microgrove
Reefbase Research Perspective

Microgrove

Underwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permaculture

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Axonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interior
Perspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integrated
Plan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed home
Plan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in Miami
Perspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlife
Perspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay waters
Site plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National Park
Aerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangwaysAerial perspective of the clustered MICROGROVE 3D printed house layout connecting units side by side with gangways
Plan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bath
Sunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne Bay
Diagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homes
Section drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne Bay
Perspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in Miami
Upper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homes
Botanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising above
Interior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodwork

OTHER PROJECTS

Space has become redundant again. Popular culture is uninterested in the goings-on in space. Once achieved, mans absurd relation with space becomes yesterdays news. To become relevant to the public, CASIS must be an amenity and not a mission. Instead of promoting an HQ, make it a public interface.
Seating design is vital in fostering communal interactions in shared spaces. Rooted in the organic growth principles of the Metabolist movement and the transformational geometric language of digital Metaballs, Meta-Bench forms an experiential seating system which individuals can move and adjust.
Infrastructure as urban performance. Serving as both a backdrop to elegant theatrical dances and a framework for holding a wandering public, the Dance Machine enacts performance through both its program and its existence as a merged urban extension of the Queensboro Bridge.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
QTCT is tasked to blend these two identities onto one site—a give and take relationship between beach ambitions and urban necessities. QTCT is a sampling of two worlds: on one hand it is the embodiment of the language of the beach and on the other it is a detailed and exacting built urban space.
The challenge of creating a pair of studio apartments that can fill a lifted 16'x16' void necessitates the creation of a quick, mobile, and opportunistic building system that can react to the found conditions of the site. Access to the site is limited and the ground must be free.
University Island is a swirling shapeshifter, in both the landscape and the architecture, that offers it’s undefined field of opportunities to the students and anticipates that each will discover and produce their own individual relationship with the island and their education.
Expanding the mission of the local Biscayne National Park Institute, MICROGROVE is a living research community designed for scientists, ecologists, researchers, and eco-tourists, dedicated to the study, restoration, and increased social awareness of coastal ecosystems.

OTHER RESEARCH