MCROH
Microgrove
Microhome Cabin Perspective

Microgrove

Interior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodworkInterior perspective of a man cooking in the MICROGROVE 3D printed home with built in cabinetry and woodwork

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Axonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interiorAxonometric diagram of the various components of the MICROGROVE 3D printed house unit with attached gangway and interior
Underwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permacultureUnderwater perspective of divers enjoying and researching the local ecology of Biscayne Bay below the aquatic permaculture
Plan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed homePlan drawing of the private Crow’s Nest sleeping and meditation room at the top of the MICROGROVE 3D printed home
Perspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integratedPerspective of researchers studying the permaculture aquatic plants and algae growth farming integrated
Perspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlifePerspective of the MICROGROVE 3D printed Biscayne Bay housing and research community with ongoing construction and wildlife
Perspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay watersPerspective of the journey to the 3D printed housing community over the Biscayne Bay waters
Site plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National ParkSite plan showing the MICROGROVE 3D printed housing community off-shore within the Biscayne Bay National Park
Botanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising aboveBotanical concept sketch of a typical mangrove plant with roots below the water and thin structure rising above
Plan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bathPlan drawing of the cabin spaces of the MICROGROVE 3D printed house combining the lounge and galley kitchen/bath
Sunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne BaySunset perspective from the upper balcony of the 3D printed Miami home on Biscayne Bay
Diagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homesDiagram showing the construction methods and components within the MICROGROVE housing system of 3D printing aquatic homes
Section drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne BaySection drawing of an individual MICROGROVE 3D printed housing unit for use in Miami’s Biscayne Bay
Perspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in MiamiPerspective of the Crow’s Nest reflection and resting zone of the 3D printed microhome in Miami
Upper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homesUpper perspective showing residents and researchers walking on the gangway paths attached to the 3D printed concrete homes
Plan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in MiamiPlan drawings of the dock, permaculture, and gangway system for the MICROGROVE 3D printed housing community in Miami
Interior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge aboveInterior view of a woman reading a book in the lounge of the 3D printed MICROGROVE home with a net lounge above

OTHER PROJECTS

Seeing Park Avenue as an underutilized zone that connects four vibrant neighborhoods from 42nd Street to 144th Street, Infrastructural Infill is a study testing the potential to locate a combination of mixed-use housing and transportation in the residual spaces caused by urban infrastructure.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
Scaffolding is often seen as a temporary urban necessity—functional, but rarely celebrated. This project reimagines scaffolding as an architectural intervention and public art piece throughout Española Way, transforming it into a vibrant, interactive element in Miami Beach’s urban fabric.
Space has become redundant again. Popular culture is uninterested in the goings-on in space. Once achieved, mans absurd relation with space becomes yesterdays news. To become relevant to the public, CASIS must be an amenity and not a mission. Instead of promoting an HQ, make it a public interface.
Infrastructure as urban performance. Serving as both a backdrop to elegant theatrical dances and a framework for holding a wandering public, the Dance Machine enacts performance through both its program and its existence as a merged urban extension of the Queensboro Bridge.
In Tempe there are two pedestrian axes: Mill Avenue and Palm Walk. Mill Avenue is successful and Palm Walk is not. Is there a way to make the palm trees useful to the students? The PEP structure is powered by buried hydraulic pressure systems giving vertical movement to the layer/palm interface.
The RACA project must meet two demands: A. REFLECTION (museum) or B. CONTINUATION (practice + addition). The current program and its stagnancy has left the site forgotten—it is a typical static museum on a living site. The site and addition must constantly change through the participation of people.
University Island is a swirling shapeshifter, in both the landscape and the architecture, that offers it’s undefined field of opportunities to the students and anticipates that each will discover and produce their own individual relationship with the island and their education.

OTHER RESEARCH