CTST
Compression Test
Axonometric Plan Animation

Compression Test

Axonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spaces

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Functions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro units
Models of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosure
Series of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructions
Pair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill construction
Sequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and services
CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes
Set of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST study
Sequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void below
Series of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulation
Series of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infill
Diagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill design
Section showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from below

OTHER PROJECTS

In Tempe there are two pedestrian axes: Mill Avenue and Palm Walk. Mill Avenue is successful and Palm Walk is not. Is there a way to make the palm trees useful to the students? The PEP structure is powered by buried hydraulic pressure systems giving vertical movement to the layer/palm interface.
The challenge of creating a pair of studio apartments that can fill a lifted 16'x16' void necessitates the creation of a quick, mobile, and opportunistic building system that can react to the found conditions of the site. Access to the site is limited and the ground must be free.
The CART live/work housing prototype adds a vertical profile to downtown while converting an underutilized public path into an urban gesture by introducing of a specialized food cart zone in New Haven. The CART residents would rent and appropriate the moving space as a means of expanding their zone.
Coney Island will remain a MUTANT appendage at the farthest shore of New York City. Coney is an agglomeration of all of its histories and should continue to simultaneously move each agenda forward. Coney will continue to evolve through mutations— this vision will accelerate its hybridity.
The YELE music studio competition, underway before the earthquake, must respond now, but plan for the future of the community. Music is relief in a time of tragedy. The goal is to meet the most basic survival needs now while leaving spaces for future growth through self sustaining phases.
Utilizing built form as a strategic carrier of culture in opposition of the status quo, the Hellinikon project links the disconnected suburban mountain communities to the east with the sea to the west while splitting the Hellinikon International Airport and Olympic Park into distinct zones.
Space has become redundant again. Popular culture is uninterested in the goings-on in space. Once achieved, mans absurd relation with space becomes yesterdays news. To become relevant to the public, CASIS must be an amenity and not a mission. Instead of promoting an HQ, make it a public interface.
The RACA project must meet two demands: A. REFLECTION (museum) or B. CONTINUATION (practice + addition). The current program and its stagnancy has left the site forgotten—it is a typical static museum on a living site. The site and addition must constantly change through the participation of people.

OTHER RESEARCH