CTST
Compression Test
Party Wall Functions

Compression Test

Diagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill design

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Sequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void below
Axonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spaces
Pair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill construction
Set of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST study
Section showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from below
CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes
Series of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructions
Series of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulation
Series of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infill
Sequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and services
Functions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro units
Models of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosure

OTHER PROJECTS

The RACA project must meet two demands: A. REFLECTION (museum) or B. CONTINUATION (practice + addition). The current program and its stagnancy has left the site forgotten—it is a typical static museum on a living site. The site and addition must constantly change through the participation of people.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
Coney Island will remain a MUTANT appendage at the farthest shore of New York City. Coney is an agglomeration of all of its histories and should continue to simultaneously move each agenda forward. Coney will continue to evolve through mutations— this vision will accelerate its hybridity.
Seeing Park Avenue as an underutilized zone that connects four vibrant neighborhoods from 42nd Street to 144th Street, Infrastructural Infill is a study testing the potential to locate a combination of mixed-use housing and transportation in the residual spaces caused by urban infrastructure.
Framework: Inverted Square Pyramid (FW:ISP) reimagines the traditional pyramid by flipping it upside down, shifting its focus from the cosmos to the people. The structure’s apexes become seating points within a flexible, interactive framework that encourages public engagement and play.
The challenge of creating a pair of studio apartments that can fill a lifted 16'x16' void necessitates the creation of a quick, mobile, and opportunistic building system that can react to the found conditions of the site. Access to the site is limited and the ground must be free.
The Urban Test Object (UTO) serves as a large-scale intervention that accelerates our relationship with the future city. Rather than solving issues like density, infrastructure, or access, the UTO heightens awareness of the rapid urban transformations shaping our future.
Planes, frames, and volumes are fundamentals to all assembly logics. With the proliferation of additive production methods, the possibility of volumetric prefabricated components has the potential to radically alter the way that we conceive of construction and the permanence of building parts.

OTHER RESEARCH