CTST
Compression Test
Construction Sequence Diagrams

Compression Test

Sequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void belowSequence of construction strategies for building two units of CTST compressed housing from a void below

RELATED RESEARCH IMAGES

RELATED PROJECT IMAGES

Sequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and servicesSequence showing the modular components for the CTST construction with frames, bed modules, storage and services
Axonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spacesAxonometric animation showing the various layers of the CTST project from columns to circulation and unit spaces
Functions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro unitsFunctions made possible by the all-in-one module with bed, bench, and kitchen for the CTST micro units
Set of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST studySet of study models looking at using tilt-up structure and pathways to hold two units in the CTST study
Section showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from belowSection showing the compressed nature of the CTST infill housing units within a void as entered from below
CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes CTST Construction diagram based on shelving systems stabilized by combining frames with solid volumes
Series of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulationSeries of function diagrams of the CTST housing units showing the rooms, shelving, and circulation
Pair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill constructionPair of model studies looking at the structural system and shelving systems stabilizing the CTST infill construction
Series of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infillSeries of concept sketches for informal structural systems that can be tilted up for the CTST housing infill
Series of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructionsSeries of axonometric drawings of the various components of the CTST infill unit constructions
Diagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill designDiagram showing the various multi-function capabilities within the shared party wall of the CTST infill design
Models of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosureModels of the CTST infill housing prototype showing the structural grid skin that doubles as storage and enclosure

OTHER PROJECTS

Planes, frames, and volumes are fundamentals to all assembly logics. With the proliferation of additive production methods, the possibility of volumetric prefabricated components has the potential to radically alter the way that we conceive of construction and the permanence of building parts.
Space has become redundant again. Popular culture is uninterested in the goings-on in space. Once achieved, mans absurd relation with space becomes yesterdays news. To become relevant to the public, CASIS must be an amenity and not a mission. Instead of promoting an HQ, make it a public interface.
Utilizing built form as a strategic carrier of culture in opposition of the status quo, the Hellinikon project links the disconnected suburban mountain communities to the east with the sea to the west while splitting the Hellinikon International Airport and Olympic Park into distinct zones.
University Island is a swirling shapeshifter, in both the landscape and the architecture, that offers it’s undefined field of opportunities to the students and anticipates that each will discover and produce their own individual relationship with the island and their education.
The CART live/work housing prototype adds a vertical profile to downtown while converting an underutilized public path into an urban gesture by introducing of a specialized food cart zone in New Haven. The CART residents would rent and appropriate the moving space as a means of expanding their zone.
The RACA project must meet two demands: A. REFLECTION (museum) or B. CONTINUATION (practice + addition). The current program and its stagnancy has left the site forgotten—it is a typical static museum on a living site. The site and addition must constantly change through the participation of people.
The GBN project sites itself as this link connecting the busiest night life district and revitalized neighborhood park in the north, the largest beach front in the city to the south, and establishes the cities first large public plaza and recreation fields adjacent to the new building.
Scaffolding is often seen as a temporary urban necessity—functional, but rarely celebrated. This project reimagines scaffolding as an architectural intervention and public art piece throughout Española Way, transforming it into a vibrant, interactive element in Miami Beach’s urban fabric.

OTHER RESEARCH